
What do you do
if a computational object fails a specification?

/∈

∈
...

Target

Over finite words and regular specifications:

1. Non-deterministic finite automata

2. Deterministic finite automata

“Regular repair of specifications”, in LICS 2011.

What do you do
if a computational object fails a specification?

...

Target

...

Restriction

Over finite words and regular specifications:

1. Non-deterministic finite automata

2. Deterministic finite automata

“Regular repair of specifications”, in LICS 2011.

At what rate do we need to repair
each word in the worst case?

Asymptotic cost

lim
n→∞

sup { cost(w ,T)

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

Example

R : (aa)∗ T : (ab)∗ 1/2
(a a)N (a b)N

R : a+b+ T : a+c+

1
a bN a cN

At what rate do we need to repair
each word in the worst case?

Asymptotic cost

Different ways of repairing:

Arbitrary Streaming

At what rate do we need to repair
each word in the worst case?

Asymptotic cost

Example

R : (a + b) x∗ (a∗ + b∗)
T : a x∗ a∗ + b x∗ b∗

Arbitrary Streaming

b x x x x a a a a

a x x x x a a a a

0
b x x x x b b b b

a x x x x a a a a

1

We study how to compute
the asymptotic cost of two regular languages

1. The asymptotic cost is rational and can be effectively computed.

2. First algorithm to compute the asymptotic cost:

I Distance automata and their determinization.

I Cycle analysis.

3. Streaming asymptotic cost.

I Reduction to mean-payoff games.

I Complexity in PTIME.

We study how to compute
the asymptotic cost of two regular languages

1. The asymptotic cost is rational and can be effectively computed.

2. First algorithm to compute the asymptotic cost:

I Distance automata and their determinization.

I Cycle analysis.

3. Streaming asymptotic cost.

I Reduction to mean-payoff games.

I Complexity in PTIME.

The cost of traveling
between languages

Cristian Riveros
Michael Benedikt
Gabriele Puppis

University of Oxford
ICALP 2011

Setting

Edit distance automata

Determinization

Asymptotic Cost

Outline

Setting

Edit distance automata

Determinization

Asymptotic Cost

Outline

Repairability over regular languages

Σ and ∆ are alphabets.

Two regular languages:

I R (Restriction) over Σ∗, and

I T (Target) over ∆∗.

R and T are given by:

I Deterministic finite automata (DFA), or

I Non-deterministic finite automata (NFA).

In this talk, all automata are trim.

Repairability using edit operations

Edit operations: deletion, insertion, and relabeling.

delete(2)

insert(3,)

relabel(4,)

All operations have cost equal to 1.

Definition
For words u, v and language T :

dist(u, v) = shortest sequence of operations that transform u into v

dist(u,T) = min
v∈T
{ dist(u, v) }

Both computable in PTIME
(Wagner and Fisher 1974, Wagner 1974).

Asymptotic cost

Definition

A(R,T) = lim
n→∞

sup { dist(w ,T)

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

Example

R : (aa)∗ T : (ab)∗
A(R,T) = 1/2

(a a)N (a b)N

R : a+b+ T : a+c+

A(R,T) = 1
a bN a cN

Asymptotic cost

Definition

A(R,T) = lim
n→∞

sup { dist(w ,T)

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

The asymptotic cost A(R,T) of regular languages R and T :

always exists.

is between 0 and 1.

In this talk:

We focus on how to compute A(Σ∗,T) where R = Σ∗.

Setting

Edit distance automata

Determinization

Asymptotic Cost

Outline

Distance automata

Definition
A distance automaton D is a non-deterministic finite automaton with
transitions labeled with cost in N ∪ {∞}.

D : Σ∗ → N ∪ {∞}

Example

D :

x y

a|0
a|0

a|1

b|1

a|0
a|0

a|1

b|1

w = a a b

ρ1 : x a|0−→ y a|1−→ y b|1−→ x cost(ρ1) = 2

ρ2 : x a|0−→ x a|0−→ y b|1−→ x cost(ρ2) = 1

D(w) = min{ cost(ρ1), cost(ρ2) } = 1

D(w) = min { cost(ρ) | ρ is a run of w over D }

The edit-distance to a language
can be computed by a distance automaton

Let T = (∆,Q, δ, q0,F) be a finite automaton.

Definition

We define the edit distance automaton DT = (Σ,Q, δedit, qedit
0 ,F edit):

DT (w) = dist(w , T) for all w ∈ Σ∗

T
p

q r

s

a b

b

u

DT
p

q r

s

a|0 a|1

a|2

a|1

a|c

a ∈ Σ

c = min
u∈Σ∗

{ dist(a, u) | p u−→ s in T }

Example

T :

p q

b
a

b

DT :

p q

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1

The edit-distance to a language
can be computed by a distance automaton

Let T = (∆,Q, δ, q0,F) be a finite automaton.

Definition

We define the edit distance automaton DT = (Σ,Q, δedit, qedit
0 ,F edit):

DT (w) = dist(w , T) for all w ∈ Σ∗

Example

T :

p q

b
a

b

DT :

p q

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1

The asymptotic cost problem
for a distance automaton

For any distance automaton D:

A(D) = lim
n→∞

sup {D(w)

|w | | w ∈ L(D), |w | ≥ n }

Theorem

The problem of deciding whether A(D) ≤ 1
2 is undecidable given an

arbitrary distance automaton D.

This is not the case for the edit distance automaton DT .

Setting

Edit distance automata

Determinization

Asymptotic Cost

Outline

The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

SCC(DT)

a|0, b|1

det

det

The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

a|0, b|1

det

det

The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

a|0, b|1

det

det

DT is NOT always determinizable.

The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

a|0, b|1

det

det

Proposition

DT |C is determinizable for every C ∈ SCC(DT).

We can determinize DT |C using Mohri’s procedure (Mohri 1997).

The asymptotic cost can be computed using
the determinization of a distance automata

Proposition

Suppose that DT is a single strongly connected component:

A(DT) = max
{

cost(L)

|L| | L is a simple cycle of det(DT)

}
cost(L) = sum of the cost of the edges of L.

Example

T : (ab + b)∗

b
a

b

DT :

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1

det(DT) :

b|0
a|0 b|0

b|0

a|0

a|1

a|0

a|1

Setting

Edit distance automata

Determinization

Asymptotic Cost

Outline

Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

Worst case for C1: (aa) (aa) (aa) . . .

A((aa)n,C1) = 1
2 .

A((aa)n,C2) = 0.

Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

Worst case for C2: b b b b . . .

A(bn,C2) = 1.

A(bn,C1) = 0.

Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

A(DT) cannot be computed as a function of the simple cycles of
det(DT |C) for all C ∈ DT .

We have to consider a combination
of the common cycles of all components

Let C1, . . . ,Ck be the SCC of DT .

Definition

We define the multi-distance automaton D̄:

det(DT |C1)

L

det(DT |Ck)

L

D̄

L
× . . . ×=

Let L1, . . . , Lm be all the simple cycles of D̄.

Definition

cost(Li ,C) = cost of the projection of the simple cycle Li

into the component det(DT |C) of D̄.

A(DT) is equal to a linear combination of its cycles

Theorem

A(DT) = max
r1,...,rm≥0

min
C∈SCC(T)

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

m: number of cycles in D̄.

r1, . . . , rm : number of repetitions of simple cycles L1, . . . , Lm.

A(DT) is equal to a linear combination of its cycles

Theorem

A(DT) = max
r1,...,rm≥0

min
C∈SCC(T)

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

Example [T : (ab + b)∗ · a∗]

det(DT |C1) :

a|0

a|1

b|0
a|0 b|0

b|0

×

det(DT |C2) :

a|0, b|1

D̄ :

=
a|0, 0

a|1, 0

a|0, 0 b|0, 1

b|0, 1

b|0, 1

a|0, 0

a|1, 0

a|0, 0 b|0, 1

b|0, 1

b|0, 1
a|0, 0

a|1, 0

A(Σ∗, T) =
1
3

Some remarks about computing A(DT)

A(DT) = max
r1,...,rm≥0

min
C∈SCC(T)

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

linear programming problem

MAXIMIZE y SUBJECT TO
m∑

i=1

cost(Li ,C)
|Li |

· xi ≥ y ∀ C ∈ SCC(T)

m∑
i=1

xi ≤ 1

A(DT) is a rational number.

Some remarks about the complexity
of computing A(DT)

A(DT) can be computed in double exponential time.

The size of the multiple-distance automata D̄
is exponential in DT .

The number m of simple cycles is exponential in D̄.

A(DT) can be reduced to a linear programming problem
of size double exponential.

The exact complexity of computing A(DT) is an open problem.

Conclusions and current work

1. The asymptotic cost is rational and can be effectively computed.

2. First algorithm to compute the asymptotic cost:

I Distance automata and their determinization.

I Cycle analysis.

3. Streaming asymptotic cost.

I Reduction to mean-payoff games.

I Complexity in PTIME.

4. Current work:

I Repairing tree regular languages.

The cost of traveling
between languages

Cristian Riveros
Michael Benedikt
Gabriele Puppis

University of Oxford
ICALP 2011

	Setting
	Edit distance automata
	Determinization
	Asymptotic Cost

