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At what rate do we need to repair
each word in the worst case?

Asymptotic cost

lim
n→∞

sup { cost(w ,T )

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

Example

R : (aa)∗ T : (ab)∗ 1/2
(a a)N (a b)N

R : a+b+ T : a+c+

1
a bN a cN
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Asymptotic cost
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Arbitrary Streaming



At what rate do we need to repair
each word in the worst case?

Asymptotic cost

Example

R : (a + b) x∗ (a∗ + b∗)
T : a x∗ a∗ + b x∗ b∗

Arbitrary Streaming

b x x x x a a a a

a x x x x a a a a

0
b x x x x b b b b

a x x x x a a a a

1



We study how to compute
the asymptotic cost of two regular languages

1. The asymptotic cost is rational and can be effectively computed.

2. First algorithm to compute the asymptotic cost:

I Distance automata and their determinization.

I Cycle analysis.

3. Streaming asymptotic cost.

I Reduction to mean-payoff games.

I Complexity in PTIME.
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Repairability over regular languages

Σ and ∆ are alphabets.

Two regular languages:

I R (Restriction) over Σ∗, and

I T (Target) over ∆∗.

R and T are given by:

I Deterministic finite automata (DFA), or

I Non-deterministic finite automata (NFA).

In this talk, all automata are trim.



Repairability using edit operations

Edit operations: deletion, insertion, and relabeling.

delete(2)

insert(3, )

relabel(4, )

All operations have cost equal to 1.

Definition
For words u, v and language T :

dist(u, v) = shortest sequence of operations that transform u into v

dist(u,T ) = min
v∈T
{ dist(u, v) }

Both computable in PTIME
(Wagner and Fisher 1974, Wagner 1974).



Asymptotic cost

Definition

A(R,T ) = lim
n→∞

sup { dist(w ,T )

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

Example

R : (aa)∗ T : (ab)∗
A(R,T ) = 1/2

(a a)N (a b)N

R : a+b+ T : a+c+

A(R,T ) = 1
a bN a cN



Asymptotic cost

Definition

A(R,T ) = lim
n→∞

sup { dist(w ,T )

|w |︸ ︷︷ ︸
normalized cost

| w ∈ R, |w | ≥ n }

The asymptotic cost A(R,T ) of regular languages R and T :

always exists.

is between 0 and 1.

In this talk:

We focus on how to compute A(Σ∗,T ) where R = Σ∗.
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Distance automata

Definition
A distance automaton D is a non-deterministic finite automaton with
transitions labeled with cost in N ∪ {∞}.

D : Σ∗ → N ∪ {∞}

Example

D :

x y

a|0
a|0

a|1

b|1

a|0
a|0

a|1

b|1

w = a a b

ρ1 : x a|0−→ y a|1−→ y b|1−→ x cost(ρ1) = 2

ρ2 : x a|0−→ x a|0−→ y b|1−→ x cost(ρ2) = 1

D(w) = min{ cost(ρ1), cost(ρ2) } = 1

D(w) = min { cost(ρ) | ρ is a run of w over D }



The edit-distance to a language
can be computed by a distance automaton

Let T = (∆,Q, δ, q0,F) be a finite automaton.

Definition

We define the edit distance automaton DT = (Σ,Q, δedit, qedit
0 ,F edit):

DT (w) = dist(w , T ) for all w ∈ Σ∗

T
p

q r

s

a b

b

u

DT
p

q r

s

a|0 a|1

a|2

a|1

a|c

a ∈ Σ

c = min
u∈Σ∗

{ dist(a, u) | p u−→ s in T }

Example

T :

p q

b
a

b

DT :

p q

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1



The edit-distance to a language
can be computed by a distance automaton

Let T = (∆,Q, δ, q0,F) be a finite automaton.

Definition

We define the edit distance automaton DT = (Σ,Q, δedit, qedit
0 ,F edit):
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Example

T :

p q

b
a

b

DT :

p q

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1



The asymptotic cost problem
for a distance automaton

For any distance automaton D:

A(D) = lim
n→∞

sup {D(w)

|w | | w ∈ L(D), |w | ≥ n }

Theorem

The problem of deciding whether A(D) ≤ 1
2 is undecidable given an

arbitrary distance automaton D.

This is not the case for the edit distance automaton DT .
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The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

SCC(DT )

a|0, b|1

det

det
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DT is NOT always determinizable.



The strongly connected components (SCC) of DT
are determinizable

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

a|0

a|1

b|0
a|0 b|0

b|0

a|0, b|1

det

det

Proposition

DT |C is determinizable for every C ∈ SCC(DT ).

We can determinize DT |C using Mohri’s procedure (Mohri 1997).



The asymptotic cost can be computed using
the determinization of a distance automata

Proposition

Suppose that DT is a single strongly connected component:

A(DT ) = max
{

cost(L)

|L| | L is a simple cycle of det(DT )

}
cost(L) = sum of the cost of the edges of L.

Example

T : (ab + b)∗

b
a

b

DT :

a|1, b|0
a|0, b|1

a|1, b|0

a|1, b|1

det(DT ) :

b|0
a|0 b|0

b|0

a|0

a|1

a|0

a|1
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Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

Worst case for C1: (aa) (aa) (aa) . . .

A((aa)n,C1) = 1
2 .

A((aa)n,C2) = 0.



Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

Worst case for C2: b b b b . . .

A(bn,C2) = 1.

A(bn,C1) = 0.



Moving to multiple components

T :
b

a

ba

a

(ab + b)∗ · a∗

DT :
a|1, b|0

a|0, b|1

a|1, b|0

a|1, b|1

a|0, b|1

a|0, b|1

det(DT |C1) :

b|0
a|0 b|0

a|0

a|1

a|0

a|1

b|0b|0

det(DT |C2) :

a|0, b|1a|0, b|1a|0, b|1

A(DT ) cannot be computed as a function of the simple cycles of
det(DT |C) for all C ∈ DT .



We have to consider a combination
of the common cycles of all components

Let C1, . . . ,Ck be the SCC of DT .

Definition

We define the multi-distance automaton D̄:

det(DT |C1)

L

det(DT |Ck )

L

D̄

L
× . . . ×=

Let L1, . . . , Lm be all the simple cycles of D̄.

Definition

cost(Li ,C) = cost of the projection of the simple cycle Li

into the component det(DT |C) of D̄.



A(DT ) is equal to a linear combination of its cycles

Theorem

A(DT ) = max
r1,...,rm≥0

min
C∈SCC(T )

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

m: number of cycles in D̄.

r1, . . . , rm : number of repetitions of simple cycles L1, . . . , Lm.



A(DT ) is equal to a linear combination of its cycles

Theorem

A(DT ) = max
r1,...,rm≥0

min
C∈SCC(T )

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

Example [ T : (ab + b)∗ · a∗ ]

det(DT |C1) :

a|0

a|1

b|0
a|0 b|0

b|0

×

det(DT |C2) :

a|0, b|1

D̄ :

=
a|0, 0

a|1, 0

a|0, 0 b|0, 1

b|0, 1

b|0, 1

a|0, 0

a|1, 0

a|0, 0 b|0, 1

b|0, 1

b|0, 1
a|0, 0

a|1, 0

A(Σ∗, T ) =
1
3



Some remarks about computing A(DT )

A(DT ) = max
r1,...,rm≥0

min
C∈SCC(T )

m∑
i=1

ri · cost(Li ,C)

m∑
i=1

ri · |Li |

linear programming problem

MAXIMIZE y SUBJECT TO
m∑

i=1

cost(Li ,C)
|Li |

· xi ≥ y ∀ C ∈ SCC(T )

m∑
i=1

xi ≤ 1

A(DT ) is a rational number.



Some remarks about the complexity
of computing A(DT )

A(DT ) can be computed in double exponential time.

The size of the multiple-distance automata D̄
is exponential in DT .

The number m of simple cycles is exponential in D̄.

A(DT ) can be reduced to a linear programming problem
of size double exponential.

The exact complexity of computing A(DT ) is an open problem.



Conclusions and current work

1. The asymptotic cost is rational and can be effectively computed.

2. First algorithm to compute the asymptotic cost:

I Distance automata and their determinization.

I Cycle analysis.

3. Streaming asymptotic cost.

I Reduction to mean-payoff games.

I Complexity in PTIME.

4. Current work:

I Repairing tree regular languages.
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