
What do you do
if a computational object fails a specification?

∉

∈

...

Target

We have studied this problem over words:

1. “Regular repair of specifications”, in LICS 2011.

2. “The cost of traveling between languages”, in ICALP 2011.

We study this problem over XML Documents (trees).



What do you do
if a computational object fails a specification?

...

Target

...

Restriction

We have studied this problem over words:

1. “Regular repair of specifications”, in LICS 2011.

2. “The cost of traveling between languages”, in ICALP 2011.

We study this problem over XML Documents (trees).



Can we repair each XML document with
an uniformly bounded number of modifications?

Bounded Repair Problem

Example

R: r → d c*
d → a* b*
a → EMPTY
b → EMPTY
c → EMPTY

T : r → a* e
e → b* c*
a → EMPTY
b → EMPTY
c → EMPTY

r

d

a a b b

c c

r

a a b b c c

r

a a e

b b c c



Can we repair each XML document with
an uniformly bounded number of modifications?

Bounded Repair Problem

Example

R′: r → a
a → b*
b → EMPTY

T ′: r → a
a → b*, c
b → EMPTY
c → EMPTY

r

a

b b . . . b

r

a

b b . . . b c



Can we repair each XML document with
an uniformly bounded number of modifications?

Bounded Repair Problem

Example

R′: r → a*
a → b*
b → EMPTY

T ′: r → a*
a → b*, c
b → EMPTY
c → EMPTY

r

a

b . . . b

. . . a

b . . . b

r

a

b . . . b c

. . . a

b . . . b c



Can we repair each XML document with
an uniformly bounded number of modifications?

Bounded Repair Problem

Example

R′′: r → a, d
a → a ∣ EMPTY
d → b, c*
b → a
c → EMPTY

T ′′: r → d, c*
d → a, a
a → a ∣ b
b → EMPTY
c → EMPTY

?

?
?

?



We give an effective characterization for bounded
repairability for every pair of regular tree languages

1. Effective characterization based on:

▸ strongly connected components and

▸ tree representation for the cyclic behavior of tree automata.

2. Decidability of the bounded repair problem.

▸ Between EXPTIME and ΠEXP
2 .

▸ Complexity analisys for other subcases.



Bounded repairability
for regular tree languages

Cristian Riveros
University of Oxford

Gabriele Puppis
CNRS/LaBRI Bordeaux

Slawek Staworko
University of Lille

ICDT 2012



Problem definition

Characterization tools

Characterization and proof

Concluding remarks

Outline



Problem definition

Characterization tools

Characterization and proof

Concluding remarks

Outline



Trees and regular tree languages

XML Documents

<person>

<name> Chris </name>

<address>

<str> Road </str>

<num> 369 </num>

</address>

</person>

XML Schemas: D

L(D) = {t ∈ XML ∣ t ⊧ D}

Unranked trees over Σ

Unranked tree automata: T

L(T) = {t ∈ Trees(Σ) ∣ T accepts t}

person

name

Chris

address

str

Road

num

369



Edit operations over trees

Edit operations: deletion, insertion, and relabeling.

r

x

a b

c d

delete r

a b c d

insert r

a x

b c

d

All operations have equal cost.

Definition

For trees t, t ′ and tree language T :

dist(t, t ′) = shortest sequence of operations that transform t into t ′

dist(t,T) = min
t′∈T
{ dist(t, t ′) }



Bounded repair problem

Definition
Given unranked tree automata R (restriction) and T (target),
determine if there exists a uniform bound N ∈ N such that:

dist(t,L(T )) ≤ N for all t ∈ L(R)

Generalization of language containment.



Problem definition

Characterization tools

Characterization and proof

Concluding remarks

Outline



How to repair trees? (intuition)

Restriction

t

Restriction

t

Target

t ′

1. Cyclic behavior:
▸ Stepwise tree automata over curry encoding of trees.
▸ Strongly connected components of stepwise tree automata.
▸ Tree representation of cyclic behavior (Synopsis trees).

2. Mapping:
▸ Covering relation between synopsis trees.



Curry encoding

Definition
The curry encoding of an unranked tree over Σ is a complete binary
tree that has two types of nodes:

Internal nodes: @.

Leaf nodes: Σ.

Example

r

b

a

d

b

a

c c

enc

@
@

r @
b a @

@
@

d @
b a

c
c



Curry encoding

Definition
enc(a) = a

enc (
a

t1 . . . tn
) = @(enc (

a
t1 . . . tn−1

), enc(tn))

@

horizontal vertical

Example

r

b

a

d

b

a

c c

enc

@
@

r @
b a @

@
@

d @
b a

c
c



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

Example

R: r → c b*
c → a+

a → EMPTY
b → EMPTY

R: δ(pc ,pa) → qa

δ(qa,pa) → qa

δ(pr ,qa) → qb

δ(qb,pb) → qb

δ0(a) → pa

δ0(b) → pb

δ0(c) → pc

δ0(r) → pr

Tree: @

@

@

r @

@

c a

a

b

b

qb

qb

qb

qa

qa

pr

pc pa

pa

pb

pb

r

c

a a

b b



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

Example

R: r → c b*
c → a+

a → EMPTY
b → EMPTY

R: δ(c,a) → qa

δ(qa,a) → qa

δ(r ,qa) → qb

δ(qb,b) → qb

Tree: @

@

@

r @

@

c a

a

b

b

qb

qb

qb

qa

qa

pr

pc pa

pa

pb

pb

r

c

a a

b b



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

Example

R: r → c b*
c → a+

a → EMPTY
b → EMPTY

R: c @ a → qa

qa @ a → qa

r @ qa → qb

qb @ b → qb

Tree: @

@

@

r @

@

c a

a

b

b

qb

qb

qb

qa

qa

pr

pc pa

pa

pb

pb

r

c

a a

b b



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

L(A) = {t ∈ Trees(Σ) ∣
∃ an accepting run of A over t}.

contexts.

concatenation between contexts:

C1 ○C2.

run of A on a context C from q.

@

@

@

r @

@

● a

a

b

b



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

L(A) = {t ∈ Trees(Σ) ∣
∃ an accepting run of A over t}.

contexts.

concatenation between contexts:

C1 ○C2.

run of A on a context C from q.

○

@

@

@

r ●

b

b

@

@

● a

a



Stepwise tree automata

Definition

A stepwise (tree) automata is a tuple A = (Q,Σ, δ, δ0,F) such that:

1. δ ∶ Q ×Q → 2Q is the transition function,

2. δ0 ∶ Σ→ 2Q is the initial function,

3. F ⊆ Q is the final set of states.

L(A) = {t ∈ Trees(Σ) ∣
∃ an accepting run of A over t}.

contexts.

concatenation between contexts:

C1 ○C2.

run of A on a context C from q.

@

@

@

r @

@

● a

a

b

b

qb

qb

qb

qa

qa

qa



Cyclic behavior of stepwise automata (components)

Definition

Given A = (Q,Σ, δ, δ0,F), the transition
graph ofA is the graph GA = (Q,Eh∪Ev)

such that for every q ∈ δ(q1,q2):

GA q

q1 q2

Eh Ev

SCC(A) is the set of strongly connected component X of GA.

L(A ∣ X) = {C ∈ contextΣ ∣ ∃p,q ∈ X ∶ q ∈ δ(p,C)}

Example

r → a∗ ⋅ b
a → EMPTY
b → b∗

r @ a → qa

qa @ a → qa

qa @ b → qf

b @ b → b

qf

bqa

r a

= horizontal, = vertical



Synopsis trees

Definition

A synopsis tree of A is a binary tree with labels in SCC(A) that
respect the transition relation of A.

X

Y Z

q ∈

q1 ∈ q2 ∈

q ∈ δ(q1,q2)

Example

Transition graph of A:

qf

bqa

r a

Synopsis tree

qf

bqa

r a



How to repair trees? (intuition)

Restriction

t

Restriction

t

Target

t ′

1. Cyclic behavior:
▸ Stepwise tree automata over curry encoding of trees.
▸ Strongly connected components of stepwise tree automata.
▸ Tree representation of cyclic behavior (Synopsis trees).

2. Mapping:
▸ Covering relation between synopsis trees.



Coverings

Definition
Given two synopsis trees τ ofR and σ of T , we say that σ covers τ iff
there exists a mapping λ from nodes of τ to nodes of σ:

1. λ preserves language containment of components,

L(R ∣ τ(x)) ⊆ L(T ∣ σ(λ(x)))

2. λ preserves the post-order of nodes,

x ≼
post
τ y iff λ(x) ≼post

σ λ(y)

3. λ preserves the ancestorship of vertical nodes,

x ≼
anc
τ y iff λ(x) ≼anc

σ λ(y) with x a vertical node

for every non-trivial nodes x and y of τ .



Coverings

σ covers τ iff there exists a mapping λ from nodes of τ to nodes of σ:

1. λ preserves language containment of components,

2. λ preserves the post-order of nodes, and

3. λ preserves the ancestorship of vertical nodes.

Example

R: r → c b*
c → a*

T : r → d
d → a* b*

b∗

ε a∗

ε ε

ε

ε b∗

b∗

a∗

ε ε

ε

ε



Problem definition

Characterization tools

Characterization and proof

Concluding remarks

Outline



Main Characterization

Theorem

L(R) is bounded repairable into L(T ) iff every synopsis tree of R is
covered by some synopsis tree of T .

Two directions proof:

From repair to covering.

From covering to repair.



From covering to repair

For every tree in t ∈ L(R):

1. Run R and find the synopsis tree τ that represents t .

2. Find a synopsis tree σ in T that covers τ .

3. Use a set of macro operations over synopsis tree to transform τ

into σ.

4. Macro operations over synopsis tree preserves bounded
repairability.



Synopsis tree operations

X

α H1

β1

Hk

βk
ε

. .
.

promotion

X

εH1

β1

Hk

βk
α

. .
.

α
demotion ε

ε
α

ε

α
ε

reduction
α

Remark.

a

b xxx

c c

b

@

@

@

a b @

@

xxx c

c

b

C

t ′

C′
delete x

@

@

@

@

a b

c

c

b

C

t ′

C′

a

b c c b



Synopsis tree operations

X

α H1

β1

Hk

βk
ε

. .
.

promotion

X

εH1

β1

Hk

βk
α

. .
.

α
demotion ε

ε
α

ε

α
ε

reduction
α

Example

R: r → c b*
c → a*

T : r → d
d → a* b*

b∗

ε a∗

ε ε

promotion

b∗

a∗

ε ε

ε

ε

ε b∗

a∗

ε ε

ε

demotion



Problem definition

Characterization tools

Characterization and proof

Concluding remarks

Outline



Concluding remarks

Effective characterization for every pair of regular tree languages.

▸ between EXPTIME and ΠEXP
2

for stepwise automata.

▸ PSPACE-hard
for deterministic DTD.

▸ in ΠP
2

for deterministic DTDs with fixed alphabet.

Future work: bounded streaming repair.



Bounded repairability
for regular tree languages

Cristian Riveros
University of Oxford

Gabriele Puppis
CNRS/LaBRI Bordeaux

Slawek Staworko
University of Lille

ICDT 2012


	Problem definition
	Characterization tools
	Characterization and proof
	Concluding remarks

