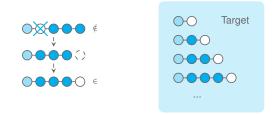
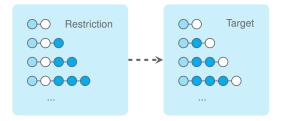
What do you do if your data fail your specification?



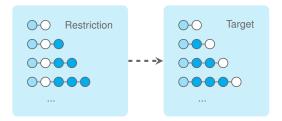
Repair your data.

What do you do if your data fail your specification?

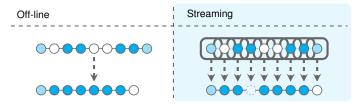


Repair your data.

What do you do if your data fail your specification?



Different ways of repairing data:



Can we streaming-repair each XML document with an uniform number of edits?

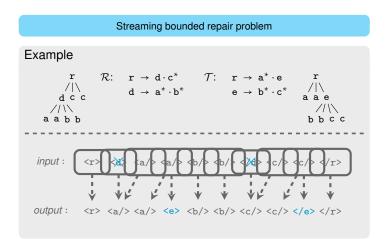
Definition (informal)

Given XML specifications \mathcal{R} (restriction) and \mathcal{T} (target), determine if there exist a streaming repair process $S: L(\mathcal{R}) \to L(\mathcal{T})$ and an uniform bound $N \in \mathbb{N}$:

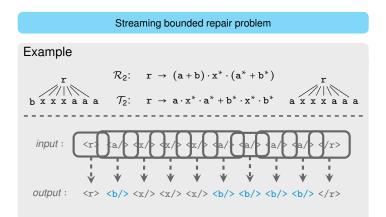
 $cost(t, S) \le N$ for all XML documents $t \models \mathcal{R}$.

Streaming bounded repair problem

Can we streaming-repair each XML document with an uniform number of edits?



Can we streaming-repair each XML document with an uniform number of edits?



Summary of main results in the paper

Effective characterization for the streaming bounded repair problem.

- For DTDs and XML Schemas (deterministic top-down tree automata).
- Based on a stack game between two players.

Precise complexity of the streaming bounded repair problem.

- EXPTIME-complete.
- An exponential gap between the word and tree case.

Which DTDs are streaming bounded repairable?

Cristian Riveros University of Oxford

Pierre Bourhis University of Oxford

Gabriele Puppis CNRS/LaBRI Bordeaux

ICDT 2013

Outline

Setting

Streaming problem

Main characterization

Complexity

Outline

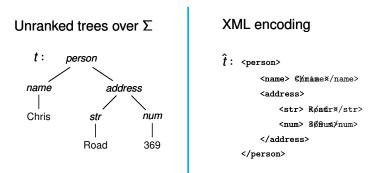
Setting

Streaming problem

Main characterization

Complexity

Trees and their XML-encoding



XML specification A (e.g. XML Schema or unranked tree automata)

$$L(\mathcal{A}) = \{t \in \text{Trees} \mid t \models \mathcal{A}\}$$
$$Docs(\mathcal{A}) = \{\hat{t} \in \text{XML} \mid t \models \mathcal{A}\}$$

Streaming transducers for repairing XML documents

• A repair strategy is a function $f : L(\mathcal{R}) \to L(\mathcal{T})$.

- A streaming repair strategy is a function $S : Docs(\mathcal{R}) \rightarrow Docs(\mathcal{T})$:
 - S is specified by a sequential transducer.
 - S could have infinite memory.

Cost of a streaming repair strategy S over $\hat{t} = a_1 \dots a_n$:

$$cost(\hat{t}, S) = \sum_{i=1}^{n} dist(a_i, u_i)$$

where u_i is the output of S after reading a_i .

Outline

Setting

Streaming problem

Main characterization

Complexity

Streaming bounded repair problem

Definition

Given XML specifications \mathcal{R} and \mathcal{T} , determine if there exists a streaming repair strategy $\mathcal{S} : Docs(\mathcal{R}) \rightarrow Docs(\mathcal{T})$ and an uniform bound $N \in \mathbb{N}$:

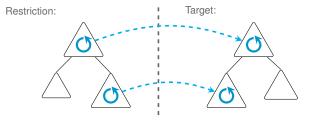
 $cost(\hat{t}, S) \leq N \quad \forall \ \hat{t} \in Docs(\mathcal{R})$

We have studied this problem over words and (non-streaming) trees

1. "Regular repair of specifications", in LICS 2011.

2. "Bounded repairability for regular tree languages", in ICDT 2012.

Main ideas previous papers:



Similar approach does NOT work for the streaming case in general !

Deterministic top-down tree automata

Definition

A deterministic top-down tree automaton (DTT-automata) is a tuple:

 $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$

• $\delta: Q \times \Sigma \rightarrow Q \times Q$ is the transition function,

q₀ is the initial state, and $F \subseteq Q$ is the final set of states.

DTT-automata over the first-child-next-sibling encoding.

Example

R:	$\texttt{r} \rightarrow \texttt{c}\texttt{b}^*$	r	90 r
	$c \rightarrow a^*$	Zin	$q_c \land \land q_f$
\mathcal{R} :	$\delta(q_0, r) = (q_c, q_f)$	сbb	\longrightarrow (q_b^{\perp})
π.	$\delta(q_c, c) = (q_c, \underline{q_f})$ $\delta(q_c, c) = (q_a, q_b)$	aa	$q_a q_f q_b$
			$q_f / q_a q_f / b$
	$\delta(\underline{q_a}, \underline{a}) = (q_f, \underline{q_a})$		$q_f \neq a \qquad q_f \perp q_b \perp$
	$\delta(\underline{q_b}, b) = (q_f, \underline{q_b})$		

Deterministic top-down tree automata

Definition

A deterministic top-down tree automaton (DTT-automata) is a tuple:

 $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$

• $\delta: Q \times \Sigma \rightarrow Q \times Q$ is the transition function,

q₀ is the initial state, and $F \subseteq Q$ is the final set of states.

DTT-automata are more expressive than DTDs or XML Schema.

Outline

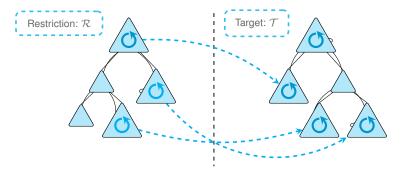
Setting

Streaming problem

Main characterization

Complexity

Main ideas of the characterization



- **1.** Transition graph of \mathcal{R} and \mathcal{T} .
- 2. Cyclic behavior: Strongly connected components.
- 3. Stack game between Generator and Repairer.
 - Following the preorder traversal of the graph (stacks are needed).

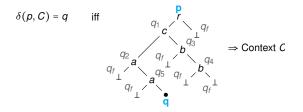
Cyclic behavior of DTT-automata (components)

Definition

Given $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$, the transition graph of \mathcal{A} is the graph $G_{\mathcal{A}} = (Q, E_h \cup E_v)$ such that for every $\delta(q, a) = (q_1, q_2)$:



SCC(A) is the set of strongly connected component X of G_A.
L(A | X) = {C ∈ Context_Σ | ∃p, q ∈ X : δ(p, C) = q}



 $L(A \mid X_1) \subseteq L(A \mid X_2)$, then the cyclic behaviour of X_1 is contained in the cyclic behaviour of X_2 .

Stacks over strongly connected components

(Prefix rewriting systems).

Stack alphabets: $SCC(\mathcal{R})$ and $SCC(\mathcal{T})$.

Rules of the form:

push:
$$X \mapsto X_1 X_2 \dashrightarrow X \cdot w \stackrel{\mathcal{A}}{\Rightarrow} X_1 \cdot X_2 \cdot w$$

pop: $X \mapsto \epsilon \dashrightarrow X \cdot w \stackrel{\mathcal{A}}{\Rightarrow} w$

Two prefix-rewriting systems: $Stack(\mathcal{R})$ and $Stack^*(\mathcal{T})$

 $X \mapsto X_1 X_2 \in \text{Stack}(\mathcal{R}) \quad \text{iff} \quad \delta(p, a) = (p_1, p_2) \exists p \in X, p_1 \in X_1, p_2 \in X_2$ $X_1 \neq X \land X_2 \neq X$

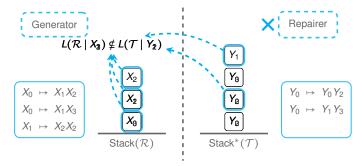
 $X \mapsto \epsilon \in \text{Stack}(\mathcal{R})$ always $Y \mapsto Y_1 Y_2 \in \text{Stack}^*(\mathcal{T})$ iff $\delta'(q, a) = (q_1, q_2) \exists q \in Y, q_1 \in Y_1, q_2 \in Y_2$ $Y \mapsto \epsilon \in \text{Stack}^*(\mathcal{T})$ always

where $X, X_1, X_2 \in SCC(\mathcal{R})$ and $Y, Y_1, Y_2 \in SCC(\mathcal{T})$.

Stack-game between Generator and Repairer

Given \mathcal{R} and \mathcal{T} we define a turn-based game $\mathcal{M}(\mathcal{R},\mathcal{T})$.

- Two players: Generator and Repairer.
 - ▶ Generator plays over Stack(*R*).
 - Repairer plays over Stack*(T).



Main characterization

Theorem

$L(\mathcal{R})$ is streaming bounded repairable into $L(\mathcal{T})$ iff Repairer has a winning strategy in $\mathcal{M}(\mathcal{R}, \mathcal{T})$.

Details of the proof: read the paper.

Outline

Setting

Streaming problem

Main characterization

Complexity

Complexity of the streaming bounded repair problem

 $\mathsf{Stack}(\mathcal{R})$:

- Non-recursive.
- Stacks are of polynomial size.

 $\mathsf{Stack}^*(\mathcal{T})$:

Stacks are of unbounded size (can be bounded by a polynomial).

Theorem

The streaming bounded repair problem for DTT-automata is

EXPTIME-complete.

For deterministic word and tree automata:

	non-streaming	streaming
words	coNP	PTIME
trees	CONEXPTIME	EXPTIME

Concluding remarks

Effective characterization for the streaming bounded repair problem.

- Only for DTT-automata (e.g. DTDs and XML Schemas).
- EXPTIME-complete for DTT-automata.

Open problems:

- Characterization in the general case (regular tree languages).
- Amount of memory needed for the streaming strategy.

Which DTDs are streaming bounded repairable?

Cristian Riveros University of Oxford

Pierre Bourhis University of Oxford

Gabriele Puppis CNRS/LaBRI Bordeaux

ICDT 2013