
What do you do if your data fail your specification?

∉

∈
...

Target

Repair your data.

Different ways of repairing data:

Off-line Streaming

What do you do if your data fail your specification?

...

Target

...

Restriction

Repair your data.

Different ways of repairing data:

Off-line Streaming

What do you do if your data fail your specification?

...

Target

...

Restriction

Different ways of repairing data:

Off-line Streaming

Can we streaming-repair each XML document
with an uniform number of edits?

Definition (informal)
Given XML specificationsR (restriction) and T (target), determine if there exist
a streaming repair process S ∶ L(R)→ L(T) and an uniform bound N ∈ N:

cost(t,S) ≤ N for all XML documents t ⊧R.

Streaming bounded repair problem

Can we streaming-repair each XML document
with an uniform number of edits?

Streaming bounded repair problem

Example

r

d

a a b b

c c

R: r → d ⋅ c∗
d → a∗ ⋅ b∗

T : r → a∗ ⋅ e
e → b∗ ⋅ c∗

r

a a e

b b c c

input ∶

output ∶

<r> <d> <a/> <a/> </d> <c/> <c/> </r>

<r> <a/><a/> <a/> <e> <c/><c/> <c/> </e> </r>

Can we streaming-repair each XML document
with an uniform number of edits?

Streaming bounded repair problem

Example

r

b x x x a a a

R2: r → (a + b) ⋅ x∗ ⋅ (a∗ + b∗)

T2: r → a ⋅ x∗ ⋅ a∗ + b∗ ⋅ x∗ ⋅ b∗
r

a x x x a a a

input ∶

output ∶

<r> <a/> <x/> <x/> <x/> <a/> <a/> <a/> <a/> </r>

<r> <x/> <x/> <x/> </r>

Summary of main results in the paper

Effective characterization for the streaming bounded repair problem.

▸ For DTDs and XML Schemas (deterministic top-down tree automata).

▸ Based on a stack game between two players.

Precise complexity of the streaming bounded repair problem.

▸ EXPTIME-complete.

▸ An exponential gap between the word and tree case.

Which DTDs are
streaming bounded repairable?

Cristian Riveros
University of Oxford

Pierre Bourhis
University of Oxford

Gabriele Puppis
CNRS/LaBRI Bordeaux

ICDT 2013

Setting

Streaming problem

Main characterization

Complexity

Outline

Setting

Streaming problem

Main characterization

Complexity

Outline

Trees and their XML-encoding

Unranked trees over Σ

t ∶ person

name

Chris

address

str

Road

num

369

Unranked trees over Σ

t ∶ person

name address

str num

XML encoding

t̂ ∶ <person>

<name> Chris </name>

<address>

<str> Road </str>

<num> 369 </num>

</address>

</person>

XML encoding

t̂ ∶ <person>

<name> </name>

<address>

<str> </str>

<num> </num>

</address>

</person>

XML specification A (e.g. XML Schema or unranked tree automata)

L(A) = {t ∈ Trees ∣ t ⊧ A}

Docs(A) = {̂t ∈ XML ∣ t ⊧ A}

Streaming transducers for repairing XML documents

A repair strategy is a function f ∶ L(R)→ L(T).

A streaming repair strategy is a function S ∶ Docs(R)→ Docs(T):

▸ S is specified by a sequential transducer.

▸ S could have infinite memory.

Cost of a streaming repair strategy S over t̂ = a1 . . .an:

cost (̂t,S) =
n

∑
i=1

dist(ai ,ui)

where ui is the output of S after reading ai .

Setting

Streaming problem

Main characterization

Complexity

Outline

Streaming bounded repair problem

Definition
Given XML specificationsR and T , determine if there exists a streaming
repair strategy S ∶ Docs(R)→ Docs(T) and an uniform bound N ∈ N:

cost(̂t,S) ≤ N ∀ t̂ ∈ Docs(R)

We have studied this problem
over words and (non-streaming) trees

1. “Regular repair of specifications”, in LICS 2011.

2. “Bounded repairability for regular tree languages”, in ICDT 2012.

Main ideas previous papers:

Restriction:

t

Target:

t ′

Similar approach does NOT work for the streaming case in general !

Deterministic top-down tree automata

Definition
A deterministic top-down tree automaton (DTT-automata) is a tuple:

A = (Σ,Q, δ,q0,F)

δ ∶ Q ×Σ→ Q ×Q is the transition function,

q0 is the initial state, and F ⊆ Q is the final set of states.

DTT-automata over the first-child-next-sibling encoding.

Example

R ∶ r→ cb∗

c→ a∗

R ∶ δ(q0, r) = (qc ,qf)
δ(qc , c) = (qa,qb)
δ(qa,a) = (qf ,qa)
δ(qb,b) = (qf ,qb)

r

c

a a

b b

r
c

a
� a

� �

b
� b

� �

�

q0

qc

qa

qf qa

qf qf

qb

qf qb

qf

qb

qf

DTT-automata are more expressive than DTDs or XML Schema.

Deterministic top-down tree automata

Definition
A deterministic top-down tree automaton (DTT-automata) is a tuple:

A = (Σ,Q, δ,q0,F)

δ ∶ Q ×Σ→ Q ×Q is the transition function,

q0 is the initial state, and F ⊆ Q is the final set of states.

DTT-automata are more expressive than DTDs or XML Schema.

Setting

Streaming problem

Main characterization

Complexity

Outline

Main ideas of the characterization

Restriction: R

t

t

t

t

t

t

Target: T

ttt

1. Transition graph ofR and T .

2. Cyclic behavior: Strongly connected components.

3. Stack game between Generator and Repairer.

▸ Following the preorder traversal of the graph (stacks are needed).

Cyclic behavior of DTT-automata (components)

Definition

GivenA = (Σ,Q, δ,q0,F), the transition graph
of A is the graph GA = (Q,Eh ∪ Ev) such that
for every δ(q,a) = (q1,q2):

GA ∶

q

q1 q2

Ev Eh

SCC(A) is the set of strongly connected component X of GA.

L(A ∣ X) = {C ∈ ContextΣ ∣ ∃p,q ∈ X ∶ δ(p,C) = q}

δ(p,C) = q iff

⇒ Context C

r
c

a
� a

� ●

b
� b

� �

�

p
q1

q2

qf q5

qf

q

q3

qf q4

qf

qf

qf

L(A ∣ X1) ⊆ L(A ∣ X2), then
the cyclic behaviour of X1 is contained in the cyclic behaviour of X2.

Stacks over strongly connected components

(Prefix rewriting systems).

Stack alphabets: SCC(R) and SCC(T).
Rules of the form:

push: X ↦ X1X2 X ⋅ w A⇒ X1 ⋅ X2 ⋅ w
pop: X ↦ ε X ⋅ w A⇒ w

Two prefix-rewriting systems: Stack(R) and Stack∗(T)

X ↦ X1X2 ∈ Stack(R) iff δ(p,a) = (p1,p2) ∃p ∈ X ,p1 ∈ X1,p2 ∈ X2

X1 ≠ X ∧ X2 ≠ X

X ↦ ε ∈ Stack(R) always

Y ↦ Y1Y2 ∈ Stack∗(T) iff δ′(q,a) = (q1,q2) ∃q ∈ Y ,q1 ∈ Y1,q2 ∈ Y2

Y ↦ ε ∈ Stack∗(T) always

where X ,X1,X2 ∈ SCC(R) and Y ,Y1,Y2 ∈ SCC(T).

Stack-game between Generator and Repairer

GivenR and T we define a turn-based gameM(R,T).

Two players: Generator and Repairer.

▸ Generator plays over Stack(R).
▸ Repairer plays over Stack∗(T).

Generator

Stack(R)

X0X3

X1X2

X2

X0 ↦ X1X2

X0 ↦ X1X3

X1 ↦ X2X2

Repairer

Stack∗(T)

Y0Y2

Y0Y2

Y0Y3

Y1

Y0 ↦ Y0Y2

Y0 ↦ Y1Y3

Y0 ↦ Y1Y3

L(R ∣ X1) ⊆ L(T ∣ Y1)L(R ∣ X2) ⊆ L(T ∣ Y2)L(R ∣ X3) /⊆ L(T ∣ Y2)

Main characterization

Theorem
L(R) is streaming bounded repairable into L(T)

iff
Repairer has a winning strategy inM(R,T).

Details of the proof: read the paper.

Setting

Streaming problem

Main characterization

Complexity

Outline

Complexity of the streaming bounded repair problem

Stack(R):
Non-recursive.

Stacks are of polynomial size.

Stack∗(T):
Stacks are of unbounded size (can be bounded by a polynomial).

Theorem
The streaming bounded repair problem for DTT-automata is

EXPTIME-complete.

For deterministic word and tree automata:

non-streaming streaming
words coNP PTIME
trees coNEXPTIME EXPTIME

Concluding remarks

Effective characterization for the streaming bounded repair problem.

Only for DTT-automata (e.g. DTDs and XML Schemas).

EXPTIME-complete for DTT-automata.

Open problems:

Characterization in the general case (regular tree languages).

Amount of memory needed for the streaming strategy.

Which DTDs are
streaming bounded repairable?

Cristian Riveros
University of Oxford

Pierre Bourhis
University of Oxford

Gabriele Puppis
CNRS/LaBRI Bordeaux

ICDT 2013

	Setting
	Streaming problem
	Main characterization
	Complexity

