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Can we streaming-repair each XML document
with an uniform number of edits?

Definition (informal)
Given XML specificationsR (restriction) and T (target), determine if there exist
a streaming repair process S ∶ L(R)→ L(T ) and an uniform bound N ∈ N:

cost(t,S) ≤ N for all XML documents t ⊧R.

Streaming bounded repair problem
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Streaming bounded repair problem

Example

r

d

a a b b

c c

R: r → d ⋅ c∗
d → a∗ ⋅ b∗

T : r → a∗ ⋅ e
e → b∗ ⋅ c∗

r

a a e

b b c c

input ∶

output ∶

<r> <d> <a/> <a/> <b/> <b/> </d> <c/> <c/> </r>

<r> <a/><a/> <a/> <e> <b/> <b/> <c/><c/> <c/> </e> </r>



Can we streaming-repair each XML document
with an uniform number of edits?

Streaming bounded repair problem

Example

r

b x x x a a a

R2: r → (a + b) ⋅ x∗ ⋅ (a∗ + b∗)

T2: r → a ⋅ x∗ ⋅ a∗ + b∗ ⋅ x∗ ⋅ b∗
r

a x x x a a a

input ∶

output ∶

<r> <a/> <x/> <x/> <x/> <a/> <a/> <a/> <a/> </r>

<r> <b/> <x/> <x/> <x/> <b/> <b/> <b/> <b/> </r>



Summary of main results in the paper

Effective characterization for the streaming bounded repair problem.

▸ For DTDs and XML Schemas (deterministic top-down tree automata).

▸ Based on a stack game between two players.

Precise complexity of the streaming bounded repair problem.

▸ EXPTIME-complete.

▸ An exponential gap between the word and tree case.



Which DTDs are
streaming bounded repairable?
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Trees and their XML-encoding

Unranked trees over Σ

t ∶ person

name

Chris

address

str

Road

num

369

Unranked trees over Σ

t ∶ person

name address

str num

XML encoding

t̂ ∶ <person>

<name> Chris </name>

<address>

<str> Road </str>

<num> 369 </num>

</address>

</person>

XML encoding

t̂ ∶ <person>

<name> </name>

<address>

<str> </str>

<num> </num>

</address>

</person>

XML specification A (e.g. XML Schema or unranked tree automata)

L(A) = {t ∈ Trees ∣ t ⊧ A}

Docs(A) = {̂t ∈ XML ∣ t ⊧ A}



Streaming transducers for repairing XML documents

A repair strategy is a function f ∶ L(R)→ L(T ).

A streaming repair strategy is a function S ∶ Docs(R)→ Docs(T ):

▸ S is specified by a sequential transducer.

▸ S could have infinite memory.

Cost of a streaming repair strategy S over t̂ = a1 . . .an:

cost (̂t,S) =
n

∑
i=1

dist(ai ,ui)

where ui is the output of S after reading ai .
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Streaming bounded repair problem

Definition
Given XML specificationsR and T , determine if there exists a streaming
repair strategy S ∶ Docs(R)→ Docs(T ) and an uniform bound N ∈ N:

cost(̂t,S) ≤ N ∀ t̂ ∈ Docs(R)



We have studied this problem
over words and (non-streaming) trees

1. “Regular repair of specifications”, in LICS 2011.

2. “Bounded repairability for regular tree languages”, in ICDT 2012.

Main ideas previous papers:

Restriction:

t

Target:

t ′

Similar approach does NOT work for the streaming case in general !



Deterministic top-down tree automata

Definition
A deterministic top-down tree automaton (DTT-automata) is a tuple:

A = (Σ,Q, δ,q0,F)

δ ∶ Q ×Σ→ Q ×Q is the transition function,

q0 is the initial state, and F ⊆ Q is the final set of states.

DTT-automata over the first-child-next-sibling encoding.

Example

R ∶ r→ cb∗

c→ a∗

R ∶ δ(q0, r) = (qc ,qf )
δ(qc , c) = (qa,qb)
δ(qa,a) = (qf ,qa)
δ(qb,b) = (qf ,qb)

r

c

a a

b b

r
c

a
� a

� �

b
� b

� �

�

q0

qc

qa

qf qa

qf qf

qb

qf qb

qf

qb

qf

DTT-automata are more expressive than DTDs or XML Schema.
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DTT-automata are more expressive than DTDs or XML Schema.



Setting

Streaming problem

Main characterization

Complexity

Outline



Main ideas of the characterization

Restriction: R

t

t

t

t

t

t

Target: T

ttt

1. Transition graph ofR and T .

2. Cyclic behavior: Strongly connected components.

3. Stack game between Generator and Repairer.

▸ Following the preorder traversal of the graph (stacks are needed).



Cyclic behavior of DTT-automata (components)

Definition

GivenA = (Σ,Q, δ,q0,F), the transition graph
of A is the graph GA = (Q,Eh ∪ Ev) such that
for every δ(q,a) = (q1,q2):

GA ∶

q

q1 q2

Ev Eh

SCC(A) is the set of strongly connected component X of GA.

L(A ∣ X) = {C ∈ ContextΣ ∣ ∃p,q ∈ X ∶ δ(p,C) = q}

δ(p,C) = q iff

⇒ Context C

r
c

a
� a

� ●

b
� b

� �

�

p
q1

q2

qf q5

qf

q

q3

qf q4

qf

qf

qf

L(A ∣ X1) ⊆ L(A ∣ X2), then
the cyclic behaviour of X1 is contained in the cyclic behaviour of X2.



Stacks over strongly connected components

(Prefix rewriting systems).

Stack alphabets: SCC(R) and SCC(T ).
Rules of the form:

push: X ↦ X1X2 X ⋅ w A⇒ X1 ⋅ X2 ⋅ w
pop: X ↦ ε X ⋅ w A⇒ w

Two prefix-rewriting systems: Stack(R) and Stack∗(T )

X ↦ X1X2 ∈ Stack(R) iff δ(p,a) = (p1,p2) ∃p ∈ X ,p1 ∈ X1,p2 ∈ X2

X1 ≠ X ∧ X2 ≠ X

X ↦ ε ∈ Stack(R) always

Y ↦ Y1Y2 ∈ Stack∗(T ) iff δ′(q,a) = (q1,q2) ∃q ∈ Y ,q1 ∈ Y1,q2 ∈ Y2

Y ↦ ε ∈ Stack∗(T ) always

where X ,X1,X2 ∈ SCC(R) and Y ,Y1,Y2 ∈ SCC(T ).



Stack-game between Generator and Repairer

GivenR and T we define a turn-based gameM(R,T ).

Two players: Generator and Repairer.

▸ Generator plays over Stack(R).
▸ Repairer plays over Stack∗(T ).

Generator

Stack(R)

X0X3

X1X2

X2

X0 ↦ X1X2

X0 ↦ X1X3

X1 ↦ X2X2

Repairer

Stack∗(T )

Y0Y2

Y0Y2

Y0Y3

Y1

Y0 ↦ Y0Y2

Y0 ↦ Y1Y3

Y0 ↦ Y1Y3

L(R ∣ X1) ⊆ L(T ∣ Y1)L(R ∣ X2) ⊆ L(T ∣ Y2)L(R ∣ X3) /⊆ L(T ∣ Y2)



Main characterization

Theorem
L(R) is streaming bounded repairable into L(T )

iff
Repairer has a winning strategy inM(R,T ).

Details of the proof: read the paper.
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Complexity of the streaming bounded repair problem

Stack(R):
Non-recursive.

Stacks are of polynomial size.

Stack∗(T ):
Stacks are of unbounded size (can be bounded by a polynomial).

Theorem
The streaming bounded repair problem for DTT-automata is

EXPTIME-complete.

For deterministic word and tree automata:

non-streaming streaming
words coNP PTIME
trees coNEXPTIME EXPTIME



Concluding remarks

Effective characterization for the streaming bounded repair problem.

Only for DTT-automata (e.g. DTDs and XML Schemas).

EXPTIME-complete for DTT-automata.

Open problems:

Characterization in the general case (regular tree languages).

Amount of memory needed for the streaming strategy.
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